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ABSTRACT
The size and complexity of systems based on multiple pro-
cessing units demand techniques for the automatic diagnosis
of their state. System-level diagnosis consists in determining
which units of a system are faulty and which are fault-free.
Elhadef and Ayeb have proposed a specialized genetic algo-
rithm (GA) that can be used to accomplish diagnosis. This
work extends their approach, describing and comparing sev-
eral evolutionary algorithms for system-level diagnosis. Im-
plemented algorithms include a simple genetic algorithm, a
specialized GA both with and without crossover and spe-
cialized versions of the compact GA and Population-Based
Incremental Learning both with and without negative exam-
ples. These algorithms had their performance evaluated us-
ing four metrics: the average number of generations needed
to find the solution, the average fitness after up to 500 gen-
erations, the percentage of tests that found the optimal so-
lution and the average time until the solution was found.
An analysis of experimental results shows that more sophis-
ticated algorithms converge faster to the optimal solution.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Fault Tolerance

General Terms
Algorithms, Reliability, Experimentation

Keywords
System-Level Diagnosis, Dependability, Evolutionary Algo-
rithms

1. INTRODUCTION
Computer systems that rely on multiple processors to

achieve their goals are increasingly popular. Examples in-
clude both local and wide-area computer networks, clusters,
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parallel architectures, and multi-processor boards. It is well-
known that given a large enough time interval, processors
will fail. A large system consisting of several processors must
employ fault-tolerance techniques in order to be able to de-
liver its expected service even when some processors become
faulty. As the size and complexity of such systems increase,
techniques for the automatic detection of faults become nec-
essary. System-level diagnosis consists in determining which
units in a system are faulty and which are fault-free [10].
Based on this information, actions such as the isolation or
replacement of faulty units can be taken.
The classical model for system-level diagnosis is the PMC

model, first presented by Preparata, Metze and Chien in
[9]. In this model, a system is defined as a collection of n
heterogeneous units, represented by a set U = {u1, . . . , un}.
Each unit in the system can be in one of two states: faulty
or fault-free. Given a fault situation, the subset F ⊂ U of
permanently faulty units is called the fault set.
The diagnosis is solved based on the results of tests per-

formed by the units in the system. It is assumed that a
fault-free unit can determine and report the state of tested
units correctly. However, the result of a test performed by
a faulty unit is undefined, and a faulty unit can “lie” about
tests executed on other units, i.e. a faulty unit may be re-
ported as being fault-free or vice versa. The diagnosis is
solved by a central unit to which all testers send the results
of their tests. This central unit does not belong to U and
does not perform any test. It is assumed that it never fails.
It is also assumed that the state of the units does not change
during diagnosis.
A testing graph is employed to represent the tests exe-

cuted by the units. It is defined as a directed graph G(U, E)
in which each vertex represents a unit ui ∈ U , and each
edge (ui, uj) is in E if and only if ui tests uj . Two sets are
associated to each unit ui ∈ U :

Γ(ui) = {uj |(ui, uj) ∈ E}

Γ−1(ui) = {uj |(uj , ui) ∈ E}
The first set contains the units uj tested by ui, and the

second contains the units uj that test ui. These sets have
two values associated with them: dout(ui) = |Γ(ui)| and
din(ui) = |Γ−1(ui)|. These values represent, respectively,
the number of units tested by ui and the number of units
that test ui.
Each edge (ui, uj) ∈ E has a test result S(ui, uj) asso-
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ciated to it. If ui tests uj as faulty, the value of S(ui, uj)
is 1, otherwise its value is 0. Given the PMC model’s as-
sumptions, S(ui, uj) is a reliable result if and only if ui is
fault-free. The set containing all the results from all the tests
is called the system’s syndrome, denoted by S∗. Therefore,
the diagnosis is solved by the central unit based on S∗.
A given syndrome S is said to be compatible with a fault

set F if, for every edge (ui, uj) ∈ E such as ui is fault-
free, S(ui, uj) = 1 if and only if uj is faulty. The system’s
syndrome, S∗, is always compatible with the system’s fault
set. The subsets S(ui) and S−1(ui) of S are also defined.
These are, respectively, the sets containing the results of the
tests performed by ui and the tests performed on ui.
A system is said to be t-diagnosable if the number of faulty

units is not greater than t, and the central unit can identify
them correctly. It is proven [4] that, if no two units test each
other, a system is t-diagnosable if n ≥ 2t+ 1 and, for every
unit ui ∈ U , din(ui) ≥ t, that is, if every unit is tested by at
least t others. The diagnosability t of a given system must
be determined in order to diagnose that system; otherwise
the result obtained may be incorrect.
System-level diagnosis is a well known problem, for which

several approaches have been proposed [10]. Practical appli-
cations recently reported include network management [7].
Elhadef and Ayeb have proposed a specialized genetic algo-
rithm (GA) for diagnosis [3]. In this work, their approach
is extended, with the application of several evolutionary al-
gorithms to diagnosis being described and compared. The
first one is a simple genetic algorithm, developed for com-
parison purposes only. The second solution is a special-
ized genetic algorithm, very similar to the one proposed in
[3], with a slightly different method being used to gener-
ate the initial population; versions both with and without
crossover were implemented. The other algorithms are spe-
cialized implementations of estimation of distribution algo-
rithms (EDAs). The algorithms are the Population-Based
Incremental Learning — PBIL [1, 2] — and the compact GA
[6]. Both were optimized specifically for system-level diagno-
sis, and PBIL was implemented with and without negative
examples.
Experimental results allowed the comparison of these ap-

proaches using four metrics: the average number of gener-
ations needed to find the solution, the average fitness after
up to 500 generations, the percentage of tests that found
the optimal solution and the average time until the solution
was found. An analysis of experimental results shows that
more sophisticated algorithms converge faster to the optimal
solution.
The rest of this paper is organized as follows. Section 2

presents the specialized GA proposed by Elhadef and Ayeb
in [3]. In section 3, the evolutionary algorithms we propose
are described: the simple GA and the specialized implemen-
tations of PBIL and the compact GA. The changes made to
the specialized GA are also highlighted. Section 4 describes
and discusses experimental results. Section 5 concludes the
paper.

2. A SPECIALIZED GA BY ELHADEF AND
AYEB

This section presents the specialized GA proposed by El-
hadef and Ayeb in [3]. Its purpose is to discover, based on
a given syndrome S∗, the system’s fault situation.

In this specialized GA, a chromosome represents a possible
fault state of the system. Each chromosome v is represented
as a bit string, with each gene corresponding to the state of
a unit in the system — faulty or fault-free. If the gene’s
value is one, the corresponding unit is faulty, otherwise it is
fault-free. Therefore, a system with n units is represented
by a chromosome of length n. For example, in a system with
n = 8, the fault set F = {u1, u4, u8} is coded as (10010001).
As system-level diagnosis assumes a t-diagnosable system in
a fault situation, a chromosome that has no faulty units or
has more than t faulty units may be deemed illegal. For
example, if t = 4 and n = 9, the chromosomes (000000000)
and (111001110) are not legal.
Given the proposed string representation, a good measure

of a chromosome’s fitness is how well it is represented by the
tests performed by the units. This measure can be obtained
by generating an S syndrome, compatible with the fault set
represented by chromosome v. This S syndrome is then
compared to the “real” system syndrome, S∗, that contains
the results of all the tests performed by the units. The S
syndrome must be generated so it is identical to S∗ if and
only if the fault set represented in v is the system’s real fault
set. In this case, v is the optimal solution.
Let F (v) be the set containing the faulty units in chromo-

some v (the genes that have a value of 1); v[i] be the i-th gene
in v and S(ui, uj) the result of test (ui, uj) in a S syndrome.
The S syndrome can be generated by two rules. The first
one states that for every ui ∈ F (v) and every uj ∈ Γ(ui);
S(ui, uj) = S∗(ui, uj). In other words, if a unit is faulty in
v, in S its tests have the same results found in the “real”
system syndrome, S∗. The second rule says that for every
ui ∈ U − F (v) and every uj ∈ Γ(ui); S(ui, uj) = v[j]. This
means that, if a unit ui is not faulty in v, in S the test result
S(ui, uj) is 1 if uj is faulty in v, or 0 otherwise. Thus, if
F (v) equals the “real” fault set F , S and S∗ are identical
and chromosome v represents the system’s real state.
For example, suppose a system with n = 3 and t = 1 and

in which u1 tests u2 as faulty, u2 tests u3 as non-faulty and
u3 tests u1 as faulty. So, S∗(u1, u2) = 1, S∗(u2, u3) = 0
and S∗(u3, u1) = 1. Suppose the syndrome S, generated by
chromosome v = (001). As u1 is not faulty in v, the value
of S(u1, u2) is the value of v[2]. Then, S(u1, u2) = 0. The
value of S(u2, u3) is also defined that way, and S(u2, u3) =
1. But, as u3 is faulty in v, the test result S(u3, u1) is
retrieved from S∗(u3, u1), and S(u3, u1) = 1. Now, suppose
the chromosome v = (100). In this case, the S syndrome
has S(u1, u2) = 1, S(u2, u3) = 0 and S(u3, u1) = 1. So, S
and S∗ are identical, and v = (100) is the optimal solution.
If the chromosome is illegal, its fitness is 0. Otherwise,

the fitness is calculated based on the generated syndrome,
S. The fitness function used in this work considers each gene
has its own fitness. A chromosome’s fitness is the normalized
sum of its genes’ fitness values.
The f function that calculates the fitness for v[i], the i-th

gene of v, is defined as:

f(v[i]) =
fin(v[i]) + fout(v[i])

2
, where

fin(v[i]) =
|S−1(ui) ∩ S∗−1(ui)|

din(ui)
, and
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fout(v[i]) =

(
1 if dout(ui) = 0,
|S(ui)∩S∗(ui)|

dout(ui)
otherwise

Function fin(v[i]) computes the normalized number of
tests performed on unit ui that have the same result in
the generated syndrome, S, and in the system’s syndrome,
S∗. In a similar fashion, fout(v[i]) computes the normalized
number of tests performed by unit ui with equal results in
S and S∗. If ui does not perform any tests, fout(v[i]) = 1.
Therefore, the i-th bit’s fitness considers ui both as a testing
and as a tested unit. The value of f(v[i]) can be seen as the
likeness of the state of ui in v being correct.
The fitness FT for a chromosome v is then the normalized

sum of v’s genes fitness values, or:

FT (v) =

Pn
i=1 f(v[i])

n

Considering the example presented earlier, if v = (001),
f(v[1]) = 0.5, f(v[2]) = 0 and f(v[3]) = 0.5. Then, FT (v) =
0.33. Now, if v = (100), all the genes will have a fitness of
1, and then FT (v) = 1.
If v is the optimal solution, that is, if v represents the

real fault state in the system, then FT (v) = 1. So, the
algorithm’s end condition corresponds to achieving a chro-
mosome with a fitness of 1.
In each generation of the evolution loop of the GA, given a

population of size p, p chromosomes are selected to generate
the new population. Roulette-wheel selection is employed.
As the selection is always made over the whole current pop-
ulation, each chromosome may be selected more than once.
Some of the selected chromosomes are then reproduced with-
out alterations, and some are used in the crossover opera-
tion. The crossover rate does not change during the algo-
rithm’s execution. At last, each bit in the chromosome has
a chance of being mutated.
The crossover operation used is a simple one-point cros-

sover that generates two new chromosomes for each pair of
parents. The generation of illegal chromosomes is solved in
a very simple way: if the crossover generates an illegal chro-
mosome, the operation is ignored and the parents are simply
reproduced in the new population.
The specialized GA uses an adaptive strategy to define

which bits in a chromosome are mutated. This strategy is
based on the fitness value of each bit in the chromosome.
The specialized GA uses this value to determine which bits
are mutated: if the bit’s fitness is less than the mutation
rate, the bit is flipped. If there are no bits to mutate by
this criterion, the one with the smallest fitness has a chance
equal to the mutation rate of being mutated.
To avoid the generation of illegal chromosomes by the mu-

tation operation, two strategies are used. Let v be a chro-
mosome and i the bit that will be mutated. If |F (v)| = 1
and v[i] = 1, i is the only faulty unit in v, and if v[i] is
mutated, v will have no faulty units. If this happens, the
bit corresponding to the tester of i with the smallest fitness
is also flipped. If |F (v)| = t and v[i] = 0, the mutation
will generate an illegal chromosome with more than t faulty
units. In this case, the bit corresponding to the faulty unit
with the smallest fitness is flipped. Using this scheme, the
generation of illegal chromosomes is avoided.

A straightforward method that can be used to generate
the initial population is a uniform random method, in which
every bit in every chromosome is defined randomly. The spe-
cialized GA can generate the initial population in a more ef-
ficient way, reducing the total number of generations needed
so that the optimal solution can be found. For each chro-
mosome, a unit is chosen randomly, and is defined as being
fault-free. The state of other units can then be inferred from
the system’s syndrome, S∗. In this work, this method was
further developed, as shown in section 3.2.

3. PROPOSED EVOLUTIONARY ALGORI-
THMS FOR DIAGNOSIS

This section describes several evolutionary algorithms for
system-level diagnosis that were implemented and compa-
red. The first one is a simple GA, designed only for com-
parison purposes. The second one is a specialized GA, very
similar to the one presented in the previous section. Ver-
sions of the Population-Based Incremental Learning - PBIL
[1, 2] - and the compact GA [6] are also presented. These
algorithms were optimized for the diagnosis problem.
All algorithms will use the same string representation and

fitness function proposed by Elhadef and Ayeb, presented in
the previous section.

3.1 A Simple GA
A simple GA was developed, for comparison purposes

only. It is a more general approach than the specialized GA.
The initial population is generated using a uniform random
method. The crossover operation is a simple one-point cros-
sover, and the mutation rate is the same for all the genes
in a chromosome. Illegal chromosomes may be generated
in the initial population or by the crossover and mutation
operations. These chromosomes will have a fitness of 0.

3.2 A Specialized GA
The implemented specialized GA is very similar to the one

presented in the previous section. Two changes were made.
One of them is that the algorithm can be run with no

crossover at all. This was done because the tests reported
in [3], attained the best results when the smallest crossover
rates were used. That way, the importance of crossover in
this specialized GA must be evaluated.
The other change was in the method used to generate

the initial population. This work considers a more detailed
approach than the one proposed by Elhadef and Ayeb. The
following algorithm is used to generate each chromosome v
in the initial population. It must be noted that it avoids the
generation of illegal chromosomes in the initial population.

1. A unit ui is chosen randomly, and is defined as being
fault-free in v.

2. Units tested by ui have their state defined in v by the
results of the tests performed by ui. These results are
taken from the system’s syndrome S∗.

3. Units that test ui in S∗ as faulty are defined as being
faulty themselves in v.

4. If the total number of faulty units in v is greater than
t, or if all the units were defined as being fault-free, ui

cannot be fault-free. The chromosome is discarded and
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ui is not selected anymore in the first step to generate
other chromosomes.

5. If the state was not defined for all the units and there
is at least one faulty unit in v, the remaining units
are assumed to be fault-free. Otherwise, one of the
units with undefined state is chosen (randomly) and
defined as faulty, while the remaining units are con-
sidered fault-free.

3.3 PBIL — Population-Based Incremental
Learning

In a genetic algorithm, the population stores information
about the points already visited by the algorithm in the
search space. Operators such as selection and crossover can
be seen as a way to use this information. Understanding the
role of the population and genetic operators in a GA made
the creation of another class of algorithms possible. These
algorithms replace operations such as crossover and selection
with another technique: the estimation of the distribution
of genes. The evolutionary algorithm presented in this sec-
tion, PBIL (Population-Based Incremental Learning) [1, 2],
is based on this concept.
In PBIL, evolution is guided by a vector containing real

values, the probability vector. Each position in this vector
represents the probability of a gene in a chromosome taking
a value equal to 1. These probabilities are initialized with
0.5, or 50%. This means each gene has an equal chance of
taking a value of 0 or 1. This value is updated through the
generations, so it represents individuals with high fitness.
At each generation, a new population is created from the
probability vector.
PBIL is characterized by three parameters. The first one

is the size of the population generated at each iteration. The
second one is the learning rate, which tells how much each
bit of the probability vector is moved in the direction of the
best solutions in each generation. The third one defines how
many individuals are used to update the probability vector
in each generation. The selection of these individuals can be
also extended, so the algorithm can also learn from negative
examples. Thus, besides being updated in the direction of
the x best examples, the probability vector can be updated
in the opposite direction of the y worst examples. The prob-
ability vector can also suffer mutations, which lead to small
variations of its values.
When PBIL is used for system-level diagnosis, the proba-

bility vector can be generated in an optimized way, excluding
right from start some illegal solutions. This can be done by
the following algorithm, executed for each position i in the
probability vector.

1. Unit ui is assumed to be fault-free.

2. The state of the units tested by ui is defined by the
results of the tests made by ui. These results are ob-
tained from the system’s syndrome, S∗.

3. Units that test ui in S∗ as being faulty are defined as
faulty themselves.

4. If there were more than t units whose state was defined
as faulty, or if all the units were defined as fault-free,
unit ui can not be fault-free - it is surely faulty. Then,
the value in the i-th position in the probability vector
is defined as being 1. Otherwise the value is set to 0.5.

To avoid the generation of illegal solutions from a prob-
ability vector, the following strategy is used: if the chro-
mosome does not have any faulty units, the unit with the
smallest fitness is defined as being faulty. If there are more
than t faulty units, the ones with the smallest fitness are
considered fault-free, until the number of faulty units is no
greater than t.

3.4 Compact GA
The compact genetic algorithm, or cGA [6], is another al-

gorithm that, like PBIL, replaces the genetic operators of
selection and crossover with the probabilistic distribution of
genes. This algorithm reduces significantly memory require-
ments because, unlike the other algorithms considered until
now, it does not need to maintain a population of solutions.
Like PBIL, the cGA uses a probability vector with real

values that starts with all positions having the value 0.5,
or 50%. This vector is used to probabilistically generate 2
solutions. These solutions are then compared, and the prob-
ability vector is updated in the direction of the “winner” —
the one with the highest fitness. Each bit is updated inde-
pendently: if the winner has a bit in 1 and the looser in
0, the corresponding bit is incremented in the probability
vector. In the same way, if the winner has a bit in 0 and the
looser in 1, the bit is decremented in the probability vector.
If a bit has the same value in both the winner and the looser,
its value remains unchanged in the probability vector. The
values in the probability vector are incremented or decre-
mented by an amount defined by a learning rate parameter.
There are studies that show that a cGA with a learning rate
of 1/n behaves like a simple GA with a population of size n
[6, 5].
The cGA can be used to perform system-level diagnosis in

a way that is similar to PBIL. The same procedures for ini-
tializing the probability vector and to avoid the generation
of illegal solutions can be used without changes.

4. EXPERIMENTS
The algorithms presented in section 3 were implemented

to solve system-level diagnosis so that their performance
could be compared. Some variations on the basic algori-
thms were evaluated, resulting in a total of six different
configurations: simple GA, specialized GA with and with-
out crossover, PBIL with and without learning from negative
examples, and compact GA.

4.1 Description
The experiments were executed on testing graphs for t-

diagnosable systems with size n, using different values of
t and n. These testing graphs were generated with each
unit ui ∈ U testing units u

(i+1) mod n
to u

(i+t) mod n
. As

n ≥ 2t + 1, each unit will be tested by t other units and
no two units will test each other. Figure 1 shows a testing
graph with n = 8 and t = 3.
For each test, a fault set was defined by randomly selecting

nf faulty units, so that nf ≤ t. From the testing graph and
the fault set, the system’s syndrome S∗ was generated, with
the results of the tests performed by the faulty units being
defined randomly.
To improve the algorithms’ performance, the fitness func-

tion was modified so that no divisions were made, i.e. the
normalization was removed. That way, the algorithms may
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Figure 1: A testing graph with n = 8 and t = 3.

work with integer values only, and the fitness range will be
from 0 to 2nt, instead of 0 to 1.
To define the parameters for each algorithm, they were

run 10 times using several different sets of parameters and
testing graphs with n = 81 and t = 40 (the biggest values
considered in these experiments). The set of parameters
with the best performance was selected for each algorithm.
The chosen configurations were:

• Simple GA: population = 10, crossover rate = 0.1 and
mutation rate = 0.01.

• Specialized GA with crossover: population = 10, cros-
sover rate = 0.05 and mutation rate = 0.01.

• Specialized GA without crossover: population = 10
and mutation rate = 0.01.

• PBIL without negative examples: population = 10,
learning rate = 0.2, mutation rate = 0.08 and solutions
used for update = 1.

• PBIL with negative examples: population = 10, posi-
tive learning rate = 0.2, negative learning rate = 0.1,
mutation rate = 0.08 and solutions used for update =
1.

• Compact GA: learning rate = 0.15 and mutation rate
= 0.08.

Let (n, t) be a testing graph for a t-diagnosable system
with n units. The following testing graphs were defined:
(81, 5), (81, 10), (81, 40), (41, 5), (41, 10), (41, 20), (21, 5),
(21, 10), (11, 5) and (8, 3). Each algorithm was executed 100
times for each of these testing graphs, using the parameters
defined above, and their average performance was computed.

4.2 Results
Tables 1 to 4 show the results obtained in the experiments.

Table 1 shows the average fitness of the best solution after
up to 500 generations. Table 2 shows the percentage of tests
that found the optimal solution. Table 3 shows the average

number of generations needed for the algorithms to find the
optimal solution. The maximum number of generations was
defined as being 500. Table 4 shows the average time needed
for the algorithms to find the optimal solution, or until the
number of generations reached 500.
From the obtained results, it is possible to come up with

several conclusions about the algorithms’ performances. The
simple GA shows a very efficient execution time, but over-
all results were the worst among all the algorithms. When
there is a big difference between the values of n and t, the
algorithm was, in most cases, unable to find even a solu-
tion that came close to the optimal solution. This probably
occurs because in those cases the number of illegal chromo-
somes generated is too high, and this makes the convergence
of results very hard.
The compact GA had the worst execution times. For the

largest networks, the number of generations needed to find
the solution was very high, but unlike the simple GA, the
average fitness of the solutions was frequently close to the
optimal one. Therefore, it can be concluded that the com-
pact GA had a good convergence, although it hardly found
the optimal solution itself.
PBIL found the optimal solution in almost all cases. Its

performance was surpassed only by the specialized GA. It
can be inferred that, for this problem, using the negative
examples was harmful, because in most cases there was an
increase in the execution time, not compensated by a faster
convergence. Indeed, in some cases, the convergence was
slower when negative examples were used.
The specialized GA, implemented with the changes pro-

posed in this work had the best overall performance among
the tested algorithms. Besides having found the optimal so-
lution in almost all cases, the specialized GA did it in a very
small number of generations. Indeed, in several cases, the
optimal solution was found in the initial population. This
shows how important is the approach used to generate the
initial population. It is possible to conclude that the spe-
cialized GA without crossover had a similar performance to
the one with crossover. In the largest networks, the num-
ber of generations needed to find the optimal solution was
very similar in both approaches, and removing the crossover
made the average execution time for the algorithm to reduce
slightly. This could indicate that the crossover may not be
responsible for the convergence in this problem. However, as
in most cases the initial population already had the optimal
solution, or at least one solution with a very high fitness,
the number of generations in the tests was very small. So,
it is not possible to analyze in a conclusive manner the role
of crossover in the convergence for this problem.

5. CONCLUSIONS AND FUTURE WORK
This work presented several evolutionary algorithms that

can be used to solve system-level diagnosis, as well as op-
timizations for these algorithms. The proposed algorithms
include a simple GA and specialized versions of the compact
GA and PBIL. Also presented is a specialized GA based on
the one presented in [3], with a with a different method being
used to generate the initial population.
Six variations of the proposed algorithms were implemen-

ted and tested, so their performance could be compared.
Besides the Simple GA and Compact GA, versions of PBIL
both with and without negative examples were evaluated, as
well as versions of the specialized GA both with and without
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Table 1: Average fitness after up to 500 generations.
Max. Simple Spec. GA Spec. GA PBIL w/o PBIL w/ cGA
Fitness GA w/ X-over w/o X-over neg. samples neg. samples

n = 8, t = 3 48 47.88 48 48 48 48 48
n = 11, t = 5 110 110 110 110 110 110 110
n = 21, t = 5 210 131.92 210 210 210 210 201.4
n = 21, t = 10 420 420 420 420 420 420 420
n = 41, t = 5 410 4.1 410 410 410 410 398.9
n = 41, t = 10 820 89.72 820 820 820 820 769.46
n = 41, t = 20 1640 1640 1640 1640 1640 1640 1629.92
n = 81, t = 5 810 0 810 810 810 810 797.86
n = 81, t = 10 1620 0 1620 1620 1620 1620 1573
n = 81, t = 20 3240 0 3240 3240 3240 3240 3030.89
n = 81, t = 40 6480 6457.18 6480 6480 6480 6480 6132.8

Table 2: Percentage of the tests that found the optimal solution.
Simple Spec. GA Spec. GA PBIL w/o PBIL w/ cGA
GA w/ X-over w/o X-over neg. samples neg. samples

n = 8, t = 3 99% 100% 100% 100% 100% 100%
n = 11, t = 5 100% 100% 100% 100% 100% 100%
n = 21, t = 5 61% 100% 100% 100% 100% 38%
n = 21, t = 10 100% 100% 100% 100% 100% 100%
n = 41, t = 5 1% 100% 100% 100% 100% 20%
n = 41, t = 10 9% 100% 100% 100% 100% 11%
n = 41, t = 20 100% 100% 100% 100% 100% 85%
n = 81, t = 5 0% 100% 100% 100% 100% 22%
n = 81, t = 10 0% 100% 100% 100% 100% 10%
n = 81, t = 20 0% 100% 100% 100% 100% 11%
n = 81, t = 40 62% 100% 100% 100% 100% 0%

Table 3: Number of generations required to find the solution.
Simple Spec. GA Spec. GA PBIL w/o PBIL w/ cGA
GA w/ X-over w/o X-over neg. samples neg. samples

n = 8, t = 3 37.3 2.33 0.94 6.99 12.66 49.46
n = 11, t = 5 41.38 1.1 0.8 16.03 21.62 69.41
n = 21, t = 5 277.11 9.11 9.96 35.36 30.23 378.27
n = 21, t = 10 68.33 2.63 3.53 41.01 45 147.13
n = 41, t = 5 496.72 3.28 2.86 34.25 40.75 400.04
n = 41, t = 10 472.53 5.82 5.36 56.06 67.55 445
n = 41, t = 20 166.71 6.73 8.07 72.1 71.89 305.77
n = 81, t = 5 500 0.87 0.84 65.05 62.85 390
n = 81, t = 10 500 0.93 0.83 64.05 104.29 450
n = 81, t = 20 500 0.88 0.93 126.38 124.02 444
n = 81, t = 40 421.62 0.83 0.76 164.76 142.2 500

Table 4: Average time until the solution was found.
Simple Spec. GA Spec. GA PBIL w/o PBIL w/ cGA
GA w/ X-over w/o X-over neg. samples neg. samples

n = 8, t = 3 0.01 0.00 0.00 0.00 0.01 0.01
n = 11, t = 5 0.02 0.00 0.00 0.01 0.02 0.03
n = 21, t = 5 0.07 0.01 0.00 0.09 0.09 0.62
n = 21, t = 10 0.11 0.01 0.00 0.28 0.25 0.22
n = 41, t = 5 0.06 0.03 0.02 0.60 0.86 5.52
n = 41, t = 10 0.15 0.07 0.08 0.12 0.29 6.76
n = 41, t = 20 0.71 0.09 0.05 0.96 0.93 2.23
n = 81, t = 5 0.08 0.10 0.10 0.76 2.06 43.58
n = 81, t = 10 0.09 0.33 0.31 2.48 4.87 81.05
n = 81, t = 20 0.11 0.90 1.02 10.15 12.45 116.2
n = 81, t = 40 26.31 1.40 1.23 16.3 15.74 50.16

2058



crossover. The test results show that the more sophisticated
algorithms converge faster to the optimal solution. In the
largest networks, this becomes very evident, with the sim-
pler approaches (simple GA, compact GA) not finding the
optimal solution or even a good solution, while the most so-
phisticated solution (specialized GA) finds it very quickly.
It can also be noted that the use of negative examples in
PBIL was harmful for this problem: in most cases there was
an increase in the execution time, not compensated by a
faster convergence.
Future work includes employing other evolutionary algori-

thms, such as the extended compact GA [5] and the BOA [8]
for diagnosis. The application of evolutionary algorithms to
distributed diagnosis, where all the units in the system solve
the diagnosis independently, is also under investigation.
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APPENDIX

A. PBIL PSEUDOCODE

PBIL (n, t, S*)

prob_vector = array of n positions

initialize (prob_vector, n, t, S*)

pop = array of POP_SIZE solutions

for i = 1 to POP_SIZE

pop [i] = generateSolution (prob_vector)

best_solutions = array of #PSAMPLES positions

best_solutions = bestSolutions (pop)

generations = 0

while fitness (best_solutions [1], n, t, S*) < 1

and generations < MAX_GENERATIONS

{

for i = 1 to #PSAMPLES

for j = 1 to n

if best_solutions [i][j] = 1

prob_vector [j] = prob_vector [j] + LRATE

else

prob_vector [j] = prob_vector [j] - LRATE

mutate (prob_vector, MUT_CHANCE, MUT_RATE)

for i = 1 to POP_SIZE

pop [i] = generateSolution (prob_vector)

best_solutions = bestSolutions (pop)

generations = generations + 1

}

return (best_solutions [1])

B. PBIL WITH NEGATIVE EXAMPLES
PSEUDOCODE

PBIL (n, t, S*)

prob_vector = array of n positions

initialize (prob_vector, n, t, S*)

pop = array of POP_SIZE solutions

for i = 1 to POP_SIZE

pop [i] = generateSolution (prob_vector)

best_solutions = array of #PSAMPLES positions

best_solutions = bestSolutions (pop)

worst_solutions = array of #NSAMPLES positions

worst_solutions = worstSolutions (pop)

generations = 0

while fitness (best_solutions [1], n, t, S*) < 1

and generations < MAX_GENERATIONS

{

for i = 1 to #PSAMPLES

for j = 1 to n

if best_solutions [i][j] = 1

prob_vector [j] = prob_vector [j] + LRATE

else

prob_vector [j] = prob_vector [j] - LRATE

for i = 1 to #NSAMPLES

for j = 1 to n

if worst_solutions [i][j] = 1

prob_vector [j] = prob_vector [j] - LRATE

else
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prob_vector [j] = prob_vector [j] + LRATE

mutate (prob_vector, MUT_CHANCE, MUT_RATE)

for i = 1 to POP_SIZE

pop [i] = generateSolution (prob_vector)

best_solutions = bestSolutions (pop)

generations = generations + 1

}

return (best_solutions [1])

C. COMPACT GA PSEUDOCODE

prob_vector = array of n positions

initialize (prob_vector, n, t, S*)

sol1 = generateSolution (prob_vector)

sol2 = generateSolution (prob_vector)

best = pickBestSolution (sol1, sol2)

worst = pickWorstSolution (sol1, sol2)

generations = 0

while fitness (best, n, t, S*) < 1

and generations < MAX_GENERATIONS

{

for i = 1 to n

if best [i] = 1 and worst [i] = 0

prob_vector [i] = prob_vector [i] + LRATE

else if best [i] = 0 and worst [i] = 1

prob_vector [i] = prob_vector [i] - LRATE

mutate (prob_vector, MUT_CHANCE, MUT_RATE)

sol1 = generateSolution (prob_vector)

sol2 = generateSolution (prob_vector)

best = pickBestSolution (sol1, sol2)

worst = pickWorstSolution (sol1, sol2)

generations = generations + 1

}

return (best)
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